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Abstract

We use the Hofer norm to show that all Hamiltonian diffeomorphisms with compact
support in R2n that displace an open set with a nonzero Hofer-Zehnder capacity move
a point farther than a capacity-dependent constant. In R2, this result is extended to
all compactly supported symplectomorphisms. Next, using the spectral norm, we show
the result holds for Hamiltonian diffeomorphisms on closed surfaces. We then show
that all area-preserving homeomorphisms of S2 and RP2 that displace the closure of
an open path connected set of fixed area move a point farther than an area-dependent
constant.

1 Introduction

The problem which motivates this paper was originally posed as below:

Question 1. Given a fixed area A > 0, is there a constant δ(A) > 0, such that for any
homeomorphism f : S2 → S2 which preserves area and displaces a subset E ⊂ S2 with area
A , there is an x ∈ S2 with |f(x)− x| ≥ δ(A)? What conditions are needed on E?

We say that a function displaces a set E if f(E) ∩ E = ∅ throughout. Despite its
rather concrete and explicit nature, the problem seems to be very difficult to solve using
elementary techniques. Due to an idea originally of Dmitri Burago, Sergei Ivanov, and
Leonid Polterovich, we approached the problem using recently discovered methods from
symplectic topology. In particular, we use the Hofer norm ‖ψ‖ to demonstrate a similar
property for any Hamiltonian diffeomorphism of R2n and use the spectral norm γ(φ) to
obtain the same result for any Hamiltonian diffeomorphism of a closed surface. By applying
additional properties of S2, we extend the result to any homeomorphism that displaces the
closure of an open, path-connected set to obtain an affirmative answer to the question posed
above. Finally, we show by lifting to the universal cover that the same result holds for RP2.

Authors’ Note: Although we were unaware of it during the production of this paper,
it has been brought recently to our attention that Sobhan Seyfaddini posted a paper with
similar results [1]. Though our paper is entirely independent of his, we acknowledge that his
previous work provided the key result of C0-continuity of the spectral norm. We believe that
the different emphasis and unique extensions in our paper make it of independent interest.



2 Results

First, we prove a similar result that can be obtained using the Hofer norm. Let (M,ω) be
a symplectic manifold. Any compactly supported Hamiltonian function H : [0, 1]×M → R
generates a time-dependent vector field XH defined by iXH

ω = dHt where Ht(x) = H(t, x)
and induces a Hamiltonian flow φtH : M → M . The Hofer norm on the space of compactly
supported Hamiltonians is

‖H‖ =

∫ 1

0

max
x

H(t, x)−min
x

H(t, x) dt.

A Hamiltonian diffeomorphism is the time-1 map of a Hamiltonian flow. Denote the group
of compactly supported Hamiltonian diffeomorphisms on (M,ω) by Hamc(M,ω). The Hofer
norm of ψ ∈ Hamc(M,ω) is defined as

‖ψ‖ = inf
H

{
‖H‖ : ψ = φ1

H

}
and although first developed for (R2n, ω0), is a norm for arbitrary symplectic manifolds. In
[2], Hofer showed that there exists a constant C > 0 such that for ψ ∈ Hamc(R2n, ω0) and
D = diameter supp(ψ):

‖ψ‖ ≤ CD‖ψ‖C0 = CD sup
x
‖ψ(x)− x‖

establishing the C0-continuity of the Hofer norm in (R2n, ω0). He also introduces the dis-
placement energy of an open set U ⊂ R2n:

e(U) = inf
ψ∈Hamc(R2n,ω0)

{‖ψ‖ : ψ(U) ∩ U = ∅}

where e(U) =∞ if U cannot be displaced such as when volume(U) > 1
2

volume(M). He also
proves the energy-capacity inequality:

cHZ(U) ≤ e(U)

where the Hofer-Zehnder capacity, cHZ , is defined by

cHZ(M,ω) = sup{‖H‖ : H is admissible}

where a Hamiltonian function is admissible if its flow has no nonconstant periodic orbits
with period ≤ 1. We now use these results to obtain a result in the spirit of Question 1:

Theorem 2.1. There exists δ(A,D) > 0 such that for any ψ ∈ Hamc(R2n, ω0) with D
= diameter supp(ψ) that displaces an open set U ⊂ R2n with cHZ(U) = A > 0, we have
‖x− ψ(x)‖ ≥ δ(A,D) for some x ∈ R2n.

Proof. By the C0 relation to the Hofer norm and the energy-capacity inequality we have:

0 < A = cHZ(U) ≤ ‖ψ‖ ≤ CD‖ψ‖C0

which implies the result.
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We would like to extend this result to the group of compactly supported symplectomor-
phisms, that is, {ψ ∈ Diff(M) : ψ∗ω = ω and ψ(x) = x outside a compact set}. We denote
this group Sympc(M,ω). When the first (de Rham) cohomology group of M is trivial, the
connected component of the identity, Sympc,0(M,ω), is equal to Hamc(M,ω). Unfortu-
nately, little is known about Sympc(R2n, ωo) for n > 2. For n = 2, M. Gromov showed in [3]
that Sympc(R4, ωo) is contractible which means Theorem 2.1 can be extended to the whole
group. For n = 1, we have the following:

Corollary 2.2. There exists δ(A,D) > 0 such that for any ψ ∈ Sympc(R2, ω0) with D =
diameter supp(ψ) that displaces an open path connected set U ⊂ R2 with Area(U) = A > 0,
we have ‖x− ψ(x)‖ ≥ δ(A,D) for some x ∈ R2.

Proof. First, we note that U is bounded because ψ has compact support. For an open,
bounded, path connected subset U ⊂ R2, Area(U) = cHZ(U). (See Chapter 3 of [4]).

Since the support of ψ is in a closed ball, B2, of diameter D, it can be regarded as an
element of Symp0(B

2, ωo). Moreover, ψ fixes the boundary of B2 since {x ∈ R2 : ψ(x) = x}
is closed.

We first show Symp0(B
2, ω0) = Ham(B2, ω0). We have that ψ corresponds to a unique

time-dependent vector field Xt with d
dt
ψt = Xt ◦ ψt for t ∈ [0, 1], φ = φ1, and φ0 = id. This

vector field is canonically paired with a one-form σ = iXtω defined by iXtω(Y ) = ω(Y,Xt).
Since H1(B2,R) = 0, σ is exact: σ = dHt for some function Ht : B2 → R.

Now, Symp(B2, ωo) is a retract of the set of orientation diffeomorphisms which preserve
the boundary by Moser’s Theorem. S. Smale showed in [5] that the second group is con-
tractible, which implies Symp(B2, ωo) is path connected.

Therefore, ψ ∈ Hamc(R2, ω0) and we get the result by applying Theorem 2.1.

In this case, our constant depends both on the area and the diameter of the support of
the function. It is clear that in the case of a compact manifold, the diameter is removed.
Unfortunately, the Hofer norm is not C0-continuous on closed manifolds [6] so this method
cannot be used to answer Question 1, but we follow a very similar approach below.

We now turn to the case of a closed symplectic manifold (M,ω) and introduce tools to
handle this case. In [7], Y. G. Oh defines the spectral norm, γ : Ham(M,ω) → R+ using
spectral invariants obtained from the Floer homology theory. It satisfies:

1. φ = id iff γ(φ) = 0 for all φ ∈ Ham(M,ω)

2. γ(ηφη−1) = γ(φ) for all φ ∈ Ham(M,ω) and all η ∈ Symp(M,ω)

3. γ(φψ) ≤ γ(φ) + γ(φ) for all φ, ψ ∈ Ham(M,ω)

4. γ(φ−1) = γ(φ) for all φ ∈ Ham(M,ω)

5. γ(φ) ≤ ‖φ‖ for all φ ∈ Ham(M,ω)
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The most difficult property to prove is the non-degeneracy of γ and is critical to the
results obtained here. S. Seyfaddini proved in [6] that the spectral norm is C0-continuous
on the space of Hamiltonian diffeomorphisms on two-dimensional manifolds by showing that
there exists C, d > 0 such that for ‖φ‖C0 ≤ d we have

γ(φ) ≤ C(‖φ‖C0)2
−2g−1

where g is the genus of the surface and ‖φ‖C0 = supx ‖φ(x)−x‖ with a Riemannian metric ‖·‖
on M . It has not been established if a similar bound holds in higher dimensions. Therefore,
we restrict all of our results to the two-dimensional case. Providing a counter-example to
Theorem 2.3 in higher dimensions would show that no such bound exists. However, Theorem
2.1 shows that a similar result holds in R2n so it seems possible that Theorem 2.3 could hold
in higher dimensions.

Analogously to the case of the Hofer norm, we can define the spectral displacement energy
following Oh in [7] for an open set U ⊂M by:

eγ(U) = inf
φ∈Ham(M,ω)

{γ(φ) : φ(U) ∩ U = ∅}

The other key element is the spectral energy-capacity relation recently shown by M. Usher
in [8] between eγ(U) and the inner Hofer-Zehnder capacity coHZ(U)

eγ(U) ≥ coHZ(U) ≥ cHZ(U)

where the inner Hofer-Zehnder capacity is defined by

coHZ(M,ω) = sup{‖H‖ : H is inner admissible}

where a Hamiltonian function is inner admissible if its flow has no nonconstant contractible
periodic orbits with period ≤ 1. We can now prove the analog of Theorem 2.1 for 2-
dimensional closed manifolds.

Theorem 2.3. Let (M,ω) be a closed 2-dimensional symplectic manifold. There exists
δ(A) > 0 such that for any φ ∈ Ham(M,ω) that displaces an open set U ⊂M with cHZ(U) =
A > 0, we have ‖x− φ(x)‖ ≥ δ(A) for some x ∈M .

Proof. Let C, d be as in the C0 relation to the spectral norm above. Assume there is such
a φ with ‖φ‖C0 ≤ d. Otherwise, let δ(A) = d. Then, we apply the spectral energy-capacity
inequality to get

0 < A = cHZ(U) ≤ γ(φ) ≤ C(‖φ‖C0)2
−2g−1

which implies the result.

In fact, the spectral norm exists on a wider class of manifolds. One particular case where
the spectral norm is continuous is on Hamc(T

∗
rN,ωo) where T ∗rN is the cotangent ball bundle

of radius r and ωo is the canonical two-form on T ∗N . The continuity of γ was shown by S.
Seyfaddini in [9] (Theorem 5, λ = 0). From this and the energy-capacity inequality, we get
the following theorem (a generalization of Theorem 2.1) for which the proof is omitted since
it is very similar to the proofs of Theorems 2.1 and 2.3.
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Theorem 2.4. Let (T ∗N,ωo) be a cotangent bundle with the canonical two-form. There
exists δ(A,D) > 0 such that for any φ ∈ Hamc(T

∗N,ωo) with D = diameter supp(φ) that
displaces an open set U ⊂ T ∗N with cHZ(U) = A > 0, we have ‖x − φ(x)‖ ≥ δ(A,D) for
some x ∈ T ∗N .

It is important to note that Theorem 2.3 only holds for Hamiltonian diffeomorphisms.
In the case of (T2, ω0), one can consider the function that rotates the torus about its central
axis, which is not Hamiltonian since it is the flow of a vector field corresponding to a nonzero
element of H1(M,ω). Then, fix the area A and create a thin set that wraps around the torus
with this area. This set can be made arbitrarily thin and a small rotation will displace this
set so the result does not hold for all symplectomorphisms of T2.

As in the case of R2, we can extend the theorem for S2 by showing that all symplecto-
morphisms are Hamiltonian. In addition, we can prove the result for area-preserving home-
omorphisms by approximating them with symplectomorphisms in order to answer Question
1.

Theorem 2.5. Let (S2, ωo) be the sphere with the canonical two-form. There exists δ(A) > 0
such that for any area-preserving homeomorphism f : S2 → S2 that displaces the closure of
an open path connected set U ⊂ S2 with Area(U) = A > 0, we have ‖x − f(x)‖ ≥ δ(A) for
some x ∈ S2.

Proof. First, note that if f reverses orientation, it maps at least one point to the antipodal
point (otherwise a homotopy to the identity can be constructed along the shortest paths).
As this is the maximal displacement of a point on the sphere, it must be the case that
‖f‖C0 ≥ δ(A), where δ(A) is the lower bound we will establish for orientation preserving
homeomorphisms. For the orientation preserving case, we need the symplectic theory.

By the same argument presented in the proof of Corollary 2.2, Ham(S2, ωo) = Symp0(S
2, ω0).

Now, we observe that Symp0(S
2, ω0) = Symp(S2, ω0). By Moser’s theorem, Symp(S2, ω0)

is a retract of Diff+(S2). S. Smale showed in [5] that the second group is homotopic to
the path connected group SO(3). Therefore, every φ ∈ Symp(S2, ω0) is Hamiltonian. Also,
cHZ(U) =Area(U) for open path connected sets U ⊂ S2 (The same proof given in [4] for
R2 can easily be extended to S2). Thus, Theorem 2.3 can be applied to obtain δ(A) for all
symplectomorphisms.

Next, we show that this property extends to orientation and area preserving homeomor-
phisms. Y. G. Oh showed in [10] that on a closed surface, an orientation and area preserving
homeomorphism can be C0 approximated by an orientation and area preserving diffeomor-
phism (symplectomorphism). This says that in the 2-dimensional case, all orientation and
area preserving homeomorphisms are symplectic homeomorphisms. Thus, if U is an open
set with Area(U) = A > 0 and f is a symplectic homeomorphism such that f(U) ∩ U = ∅,
then there is a symplectomorphism φ such that supx∈M ‖f(x) − φ(x)‖ < ε for any ε. Since
U is compact, we can choose ε small enough such that φ(U) ∩ U = ∅. Then, the previous
result shows that there is an x such that ‖φ(x)−x‖ ≥ δ(A), so ‖f(x)−x‖ ≥ δ(A)− ε. Since
ε is arbitrary, we have ‖f(x)− x‖ ≥ δ(A).
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Corollary 2.6. There exists δ(A) > 0 such that for any area-preserving homeomorphism
f : RP2 → RP2 that displaces the closure of an open path connected set U ⊂ RP2 with area
A, we have ‖x− f(x)‖ ≥ δ(A) for some x ∈ RP2.

Proof. First we lift f to the unique orientation-preserving homeomorphism g : S2 → S2.
We observe that g must be measure-preserving as well. Let B ⊂ S2 be an open ball with

area less than half of S2 such that g(B) also has area less than half of S2. Let the standard
measure on S2 and on RP2 be denoted by µ, i.e., µ(A) = Area(A). Now, since f is measure
preserving, µ(f ◦ p(B)) = µ(p(B)). But since f ◦ p = p ◦ g, µ(p(B)) = µ(p ◦ g(B)). But both
B and g(B) project to homeomorphic images on RP2, µ(p(B)) = µ(B) and µ(p ◦ g(B)) =
µ(g(B)), so µ(g(B)) = µ(B). Since g is locally measure-preserving, it is measure-preserving.

Next, g displaces the closure of a path connected open set with area greater than or
equal to A: since f displaces U , g displaces p−1(U) = p−1(U) (the equality follows from the
fact that p is a local homeomorphism). To see this, take x ∈ g(p−1(U)). Then there is a
y ∈ p−1(U) such that g(y) = x. Then p(y) ∈ U and f ◦ p(y) = p ◦ g(y) = p(x) ∈ f(U). Since
f displaces U , p(x) cannot be in U , so p−1(U) ∩ g(p−1(U)) = ∅. By continuity, p−1(U) is
open. Now, there are up to two path connected components of p−1(U) since any path can
be lifted. If there are two path connected components, choose one since both will have area
= A. If there is one path connected component, it must have area greater than or equal to
A. Thus, g satisfies the conditions of Theorem 2.5 and there exists δ′(A) > 0 and x ∈ S2

such that ‖x− g(x)‖ ≥ δ′(A).
Now, we show that this property descends to f . For convenience, normalize the metric

so that the antipodal distance on S2 is 1. First, if δ′(A) ≤ ‖x− g(x)‖ < 1
2
, let δ(A) = δ′(A).

Then g(x) is outside the δ(A)-ball at x and the δ(A)-ball at the antipodal point of x, so
p(g(x)) = f(p(x)) is outside the δ(A) ball centered at p(x), giving the desired result. If
1
2
≤ ‖x− g(x)‖, first let δ(A) = min{δ′(A), 1

2
− ε} for any small ε > 0. The result still holds:

Since g is an orientation-preserving homeomorphism, it has a fixed point y by the Lefschetz
theorem. Since the function from S2×S2 to R given by ‖x−g(x)‖ is continuous and is zero at
y, the intermediate value theorem implies that there is an x′ such that ‖x′−g(x′)‖ ∈ [δ(A), 1

2
),

so the previous argument applies.

3 Acknowledgements

We would like to thank Dmitri Burago for informing us of the problem of displacing sets
on the sphere and to again thank Dmitri Burago, Sergei Ivanov, and Leonid Poltervich for
the idea to use the spectral norm to solve this problem. We would also like to thank Misha
Guysinsky for his guidance and for many useful discussions and comments. We thank Sobhan
Seyfaddini for suggesting that his results in [9] would allow us to prove the result on the
cotangent bundle. This work was performed as part of The Pennsylvania State University
Summer REU 2013 (supported by NSF Grant 428-44 64BB).

References

[1] S. Seyfaddini, The Displaced Disks Problem via Symplectic Topology, arXiv:1307.5704.

6

http://arxiv.org/pdf/1307.5704.pdf


[2] H. Hofer, Estimates for the Energy of a Symplectic Map, Comment. Math Helv. 68
(1993), 4872.

[3] M. Gromov, Pseudoholomorphic Curves in Symplectic Manifolds, Invent. Math. 82
(1985), 307.

[4] H. Hofer and E. Zehnder, 1994: Symplectic Invariants and Hamiltonian Dynamics.
Birkhauser, 341 pp.

[5] S. Smale, Diffeomorphisms of the 2-Sphere, Proc. Amer. Math. Soc. 10 (1959), 621.

[6] S. Seyfaddini, C0-limits of Hamiltonian flows and Oh-Schwarz spectral invariants,
arXiv:1109.4123v2.

[7] Y. G. Oh, Spectral Invariants, Analysis of the Floer Moduli Space and Geometry of the
Hamiltonian Diffeomorphism Group, Duke Math. J. 130 (2005), 199.

[8] M. Usher, The Sharp Energy-Capacity Inequality, Comm. Contemp. Math. 12 (2010),
457.

[9] S. Seyfaddini Descent and C0-Rigidity of Spectral Invariants on Monotone Symplectic
Manifolds, J. Topol. Anal. 4 (2012), 481.

[10] Y. G. Oh, C0-coerciveness of Moser’s problem and smoothing area preserving homeo-
morphism, arXiv:math/0601183v5.

7

http://arxiv.org/pdf/1109.4123.pdf
http://arxiv.org/pdf/math/0601183.pdf

	Introduction
	Results
	Acknowledgements

